- contractible complex
- мат.стягиваемый комплекс
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Complex convexity — Definition A set Ω in is called convex if its intersection with any complex line is contractible. Background In complex geometry and analysis, the notion of convexity and its generalizations play an important role in understanding function… … Wikipedia
CW complex — In topology, a CW complex is a type of topological space introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still… … Wikipedia
Weakly contractible — In mathematics, a topological space is said to be weakly contractible if all of its homotopy groups are trivial.PropertyIt follows from Whitehead s Theorem that if a CW complex is weakly contractible then it is contractible.ExampleDefine S^infty… … Wikipedia
Almost complex manifold — In mathematics, an almost complex manifold is a smooth manifold equipped with smooth linear complex structure on each tangent space. The existence of this structure is a necessary, but not sufficient, condition for a manifold to be a complex… … Wikipedia
Vietoris–Rips complex — In topology, the Vietoris–Rips complex, also called the Vietoris complex or Rips complex, is an abstract simplicial complex that can be defined from any metric space M and distance delta; by forming a simplex for every finite set of points that… … Wikipedia
Kuiper's theorem — In mathematics, Kuiper s theorem (after Nicolaas Kuiper) is a result on the topology of operators on an infinite dimensional, complex Hilbert space H. It states that the space GL(H) of invertible bounded endomorphisms H is such that all maps … Wikipedia
Fundamental group — In mathematics, the fundamental group is one of the basic concepts of algebraic topology. Associated with every point of a topological space there is a fundamental group that conveys information about the 1 dimensional structure of the portion of … Wikipedia
Classifying space — In mathematics, specifically in homotopy theory, a classifying space BG of a topological group G is the quotient of a weakly contractible space EG (i.e. a topological space for which all its homotopy groups are trivial) by a free action of G. It… … Wikipedia
Čech cohomology — In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech. Contents 1 Motivation 2… … Wikipedia
Classifying space for U(n) — In mathematics, the classifying space for the unitary group U(n) is a space B(U(n)) together with a universal bundle E(U(n)) such that any hermitian bundle on a paracompact space X is the pull back of E by a map X → B unique up to homotopy. This… … Wikipedia
Orbifold — This terminology should not be blamed on me. It was obtained by a democratic process in my course of 1976 77. An orbifold is something with many folds; unfortunately, the word “manifold” already has a different definition. I tried “foldamani”,… … Wikipedia